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Overview

1 A review of log-concave density estimation for exact data

2 Log-concave density estimation for censored data
• Problem formulation
• Theoretical results
• An EM algorithm
• Simulated and real data examples
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Problem

Problem: Nonparametric estimation of the density f of a distribution P
on R based on independent observations X1,X2, . . . ,Xn using
maximum likelihood.

Log-likelihood:

ℓ(f ) :=
n∑

i=1

log f (Xi),

not bounded from above on space of all densities f .

Our approach: impose shape constraint.
Unimodality is not enough.
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Unimodality is not enough!

Distribute mass 1/2 uniformly over [x(1), x(n)] (blue) and concentrate
mass 1/2 more and more closely around one individual point (red).
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Log-concavity

A density f is called log-concave if φ := log ◦ f : R → [−∞,∞) is a
concave function.

Turns out that class Flc of log-concave densities is a large, rather
flexible class with many nice properties.
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Properties of Flc

• Every log-concave density is unimodal.

• Ibragimov (1956): f log-concave if and only if f ∗ g is unimodal for
every unimodal g
(Log-concavity has been called “strong unimodality”).

• Flc is closed under convolution and weak limits.

• S, Hüsler and Dümbgen (2009/11), strong continuity property:
weak convergence implies pointwise convergence of densities,
and conv. in an exponentially weighted total variation distance:∫
exp(δ|x |)|fn(x)− f (x)|dx → 0 for some δ > 0.

• Every log-concave density has subexponential tails and a
non-decreasing hazard rate.
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Parametric families of log-concave distributions

The class of log-concave densities contains the following parametric
families:
• Normal, logistic, exponential, Laplace, uniform, Gumbel
• Gamma and Weibull with shape parameter ≥ 1
• Beta with both shape parameters ≥ 1
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Log-concave density estimation

Nonparametric maximum likelihood estimation under log-concavity
constraint has been studied independently in
• Rufibach (2006) and Dümbgen and Rufibach (2009)
• Pal, Woodroofe, and Meyer (2007)

Task: for n ≥ 2 find

f̂n ∈ argmax
f∈Flc

n∑
i=1

log f (Xi),

where Flc := {f : R → R+log-concave density}.
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First results

Equivalent problem (by “Silverman’s trick”): find

φ̂n ∈ argmax
φ∈Φ

1
n

n∑
i=1

φ(Xi)−
∫ ∞

0
expφ(x) dx︸ ︷︷ ︸

=:L(φ)

where Φ is set of all concave (and upper semicontinuous, say)
functions R → [−∞,∞).

Shape: φ̂n piecewise linear, changes of slope only possible at data
points Xi , dom(φ̂n) = [X(1),X(n)].

L depends on φ only via φ(X1), . . . , φ(Xn). Is strictly concave and
coercive; defined on a closed, convex cone ⊂ Rn.
=⇒ Existence and uniqueness of NPMLE f̂n.
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Further properties of f̂ n (simplified)
(Dümbgen & Rufibach, 2009, and Balabdaoui, Rufibach & Wellner, 2009)
• Mean(f̂n) = empirical mean, Variance(f̂n) ≤ empirical variance.

• Uniform consistency: ∥f̂n − f∥∞ → 0, and ∥F̂n − F∥∞ → 0.

• Rate-optimality and adaptivity: For any compact interval
T ⊂ int{f > 0} and a true f that is Hölder continuous with
exponent β ∈ [1,2], we have

max
x∈T

|f̂n(x)− f (x)| = Op

(( log(n)
n

)β/(2β+1)
)
.

• Pointwise limit distributions: If f (x0) > 0, φ ∈ C2 around x0, and
φ′′(x0) ̸= 0:

n2/5(f̂n(x0)− f (x0)
) D−→ c(x0, f )H ′′(0),

where H is so-called “lower invelope” of Y (t) =
∫ 0∨t

0∧t W (s)ds − t4,
W two-sided Brownian motion starting in 0.

• results for derived quantities: mode, distance between knots.
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Computation

We have a concave maximization problem over a closed convex cone
in Rn.

n potentially large.

There is a fast active set algorithm by Dümbgen and Rufibach (2011),

available in the R-package logcondens.



Part 1: log-concave densities and exact data

Simulation example

Sample 100 points from Γ(3,1).
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Related work

• Multivariate case (Cule, Samworth and Stewart, 2010, JRSS B); R
package LogConcDEAD (Cule, Gramacy and Samworth, 2009, J
Stat. Soft.).

• General approximation theory with applications to additive
regression models with log-concave error distribution (Dümbgen,
Samworth and S, 2010, Ann. Stat.).

• Discrete case (Balabdaoui and Rufibach, preprint 2011).
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Censored data

For simplicity of notation: estimate densities on R+; think of distribution
of time to a certain event.

Instead of exact values Xi we observe intervals X̃i containing Xi . The
following cases are possible:
• X̃i = {Xi};
• X̃i = (Li ,Ri ] where 0 ≤ Li < Ri < ∞;
• X̃i = (Li ,∞) where Li ≥ 0.

Write generally Li := inf X̃i , Ri := sup X̃i .

We would like to estimate the “underlying distribution of the Xis”. (It is
not clear what this means without further specification.)
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A concrete censoring model

Assume that the i-th individual is inspected at times Tij , 1 ≤ j ≤ Ki ,
where 0 =: Ti0 < Ti1 < Ti2 < . . . < Ti,Ki .
If Ki = ∞, assume that Ti,∞ := supj(Tij) = ∞.

Let furthermore Yij be an indicator for exact observability in the j-th
inter-inspection interval

Iij :=

{
(Tij ,Ti,j+1] if 0 ≤ j < Ki ;
(Tij ,∞) if j = Ki .

Then the Xi translate into observations X̃i as follows:

X̃i :=

{
Xi if Xi ∈ Iij and Yij = 1;
Iij if Xi ∈ Iij and Yij = 0.

Note: The Ki , Tij , and Yij may be arbitrarily dependent random
variables.
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Special cases

Right-censoring: if event happens prior to a single inspection time, it
is observed exactly, otherwise censored. Ki ≡ 1, Ii0 ≡ 1, Ii1 ≡ 0.

Current status model: it is only known whether event happened
before or after a single inspection time. Ki ≡ 1, Ii0 ≡ Ii1 ≡ 0.

Mixed case interval-censoring: for each individual it is known in
which of a number of contiguous intervals the event happened.
Ki finite-valued, Iij ≡ 0 for all j .

Rounding and binning: Xis are known up to rounding to closest
integer (say). Ki ≡ ∞, Iij ≡ 0, Tij ≡ j + 1/2 for all i , j .
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Conditional log-likelihood

Assume that conditionally on all Ki , Tij , and Yij the random variables
X1, . . . ,Xn are i.i.d. with density f = exp ◦φ.

The normalized log-likelihood for φ is then

ℓ(φ) := ℓ(φ; X̃1, . . . , X̃n)

:=
1
n

n∑
i=1

[
1{Li = Ri}φ(Xi) + 1{Li < Ri} log

(∫ Ri

Li

expφ(x) dx
)]

,

where Li = inf X̃i , Ri = sup X̃i .
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Likelihood maximization

Maximize ℓ(φ) over all φ ∈ Φ that satisfy
∫
expφ(x)dx = 1.

Equivalently: Maximize

L(φ) =
1
n

n∑
i=1

[
1{Li = Ri}φ(Xi) + 1{Li < Ri} log

(∫ Ri

Li

expφ(x) dx
)]

−
∫ ∞

0
expφ(x) dx

over φ ∈ Φ.
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Shape requirements for maximizer φ̂

Let 0 ≤ τ1 < τ2 < . . . < τq ≤ ∞ be the endpoints of the data intervals,
i.e. {τ1, . . . , τq} = {Li : 1 ≤ i ≤ n} ∪ {Ri : 1 ≤ i ≤ n}.

Then any φ̂ ∈ argmaxφ∈Φ L(φ) satisfies
• [mini Ri ,maxi Li ] ⊂ dom

(
φ̂
)

⊂ [τ1, τq]

• φ̂ is linear on every interval (τj , τj+1) ⊂ dom(φ̂) \
⋃n

i=1[Li ,Ri ].
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Shape simplifications for maximizer

Theorem (shape)

Suppose that argmaxφ∈Φ L(φ) ̸= ∅.

Then there exists a maximizer φ̂ with dom(φ̂) = [τj1 , τj2 ] ∩ R+ for some
j1, j2 that is piecewise linear on dom(φ̂) with at most one change of
slope in any interval (τj , τj+1).

There is no change of slope in
• the two extreme intervals (τj1 , τj1+1) and (τj2−1, τj2);
• the interval (τj1+1, τj1+2) unless there is an i such that

Li = Ri = τj1 , and the interval (τj2−2, τj2−1) unless there is an i
such that Li = Ri = τj2 ;

• any interval (τj , τj+1) ⊂ dom(φ̂) \
⋃n

i=1[Li ,Ri ].



Part 2: censored data

Existence of maximizer

Theorem (existence)

Assume that there is no io ∈ {1, . . . ,n} with Lio = Rio = Xio and

n⋂
i=1

[Li ,Ri ] = {Xio}.

Then
argmax
φ∈Gconc

L(φ) ̸= ∅,

where Gconc ⊂ Φ consists of all piecewise linear functions with domain
and changes of slope according to the shape theorem. We only allow
slope changes on a fine grid t1 < t2 < . . . < tm containing the finite τj .
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Counter-example

Suppose that there is an io ∈ {1, . . . ,n} with Lio = Rio = Xio and

n⋂
i=1

[Li ,Ri ] = {Xio}.

Assuming that there are intervals to the left and to the right of Xio =: τjo
(otherwise idea is easily adapted), we can obtain an arbitrarily large
log-likelihood, by defining φ as a triangle function with domain
[τjo−1, τjo+1] and peak in τjo :

The integral of exp ◦φ over [τjo−1, τjo ] and [τjo , τjo+1] can be kept
constant, while φ(τjo) and hence L(φ) go towards ∞.
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Proof idea of existence theorem

Consider as a problem of maximizing L(φ) over a convex cone in
[−∞,∞)m × [−∞,0); φ = (φ1, . . . , φm, φ̃m+1), where φi := φ(ti) and
φ̃m+1 := φ′(tm+).

1 Log-likelihood is continuous on Gconc ∩ ([−∞, k ]m × [−∞,−1/k ])
for every k ∈ N, which is compact in extended Euclidean topology
=⇒ max over this set exists.

2 Show L(φ(k)) → −∞ for every sequence (φ(k))k ∈ Gconc with
max1≤i≤m+1 φ

(k)
i → ∞ by somewhat tedious calculations, where

φ
(k)
m+1 := − log(−φ̃

(k)
m+1

′).

Assuming now that there is no maximizer in
Gconc ∩

(
[−∞,∞)m × [−∞,0)

)
leads to a contradiction.
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Open problems

• uniqueness
• consistency and rates
• everything else . . .
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Computation

Still maximization over cone in typically very high dimension (now m).
But our log-likelihood function is not concave anymore!

We try an EM algorithm.

Remember:

ℓ(φ) :=
1
n

n∑
i=1

[
1{Li = Ri}φ(Xi) + 1{Li < Ri} log

(∫ Ri

Li

expφ(x) dx
)]

.

“incomplete data log-likelihood” (normalized);

ℓ∗(φ) :=
1
n

n∑
i=1

φ(Xi)

“complete data log-likelihood” (normalized).
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EM algorithm

E step: Given φr ∈ Gconc (log-densities in Gconc), compute

ℓ̃∗(φ;φr ) := Eφr

(
ℓ∗(φ)

∣∣ Xi ∈ X̃i for all i
)

=
1
n

n∑
i=1

Eφr

(
φ(Xi)

∣∣ Xi ∈ X̃i
)

=
1
n

n∑
i=1

[
1{Li = Ri}φ(Xi) + 1{Li < Ri}

Eφr

(
φ(Xi)1{Xi ∈ X̃i}

)
Pφr

(
Xi ∈ X̃i

) ]
.

Easy, since φr , φ piecewise linear.

M step: Maximize ℓ̃∗(φ;φr ) over all φ ∈ Gconc with dom(φ) ⊂ dom(φr ).
Domain will not get smaller. Call maximizer φr+1.
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Reduction to Active Set Algorithm

Eφr

(
φ(Xi)1{Xi ∈ [a,b]}

)
is a linear combination of φ(a) and φ(b) if φr ,

φ are linear on [a,b], 0 ≤ a ≤ b < ∞.

Eφr

(
φ(Xi)1{Xi ∈ [a,∞)}

)
is a linear combination of φ(a) and φ′(a+) if

φr , φ are linear on [a,∞), 0 ≤ a < ∞.

Therefore

ℓ̃∗(φ;φr ) =
m∑

j=1

wjφ(tj) + wm+1φ
′(tm+)

with certain (computable) weights w1, . . . ,wm > 0; wm+1 > 0 if right
endpoint ∞ appears in data intervals, = 0 otherwise.

Is weighted version of our exact data log-likelihood. We may use the
original active set algorithm for m data points (with an extension for the
right-hand slope)!
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Domain reduction

EM algorithm starts on maximal domain [mini Li ,maxi Ri ].

Problem: Domain is never reduced, but we may have started on too
large domain. Algorithm forces φr towards −∞ on extra domain
(leading to convergence / numerical problems).

Solution: If
∫ τj+1
τj

expφ(x)dx gets “too small” for some j (only possible
at the very left or very right of current domain), the corresponding
interval is removed from the domain and the EM algorithm is restarted
on the reduced domain.
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Three examples

• (simulated) right-censored Γ(3,1)-data
• (simulated) mixed-case interval-censored Gumbel(2,1)-data
• (real data) ovarian cancer cases
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Example 1: Right-censoring

Consider the same 100 data points from Γ(3,1) as before, but now
introduce censoring after individual Γ(2,1/2)-distributed inspection
times. Resulting data (37 censored):
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Example 1: Log-density estimates
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Example 1: Density estimates
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Example 2: Interval-censoring

100 data points from a Gumbel(2,1)-distribution. Each individual is
inspected according to a Poisson(1)-process, i.e. each inspection takes
place an Exp(1)-distributed time after the last (all times independent)
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Example 2: Survival function estimates
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Example 3: Real data

We consider the dataset ovarian from the R-package survival.
Survival times in days of 26 women with ovarian cancer (14 censored).
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Example 3: Survival function estimates
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Cure probability

What if we allow for the possibility that patients are cured, i.e. with a
certain probability p0 a woman will not die from cancer?

We model this by allowing subprobability densities of total mass 1 − p0
and adding a point mass of p0 at time ∞.

New log-likelihood:

ℓ(φ,p0) :=
1
n

n∑
i=1

[
1{Li = Ri}φ(Xi)

+ 1{Li < Ri} log
(∫ Ri

Li

expφ(x) dx + p01{Ri = ∞}
)]

.

For known p0, nothing essential changes in our algorithm!
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Profile likelihood maximization in p0

Maximize ℓprofile(p0) := maxφ∈Gconc(p0)
ℓ(φ,p0) ⇝ p̂0
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In our example p̂0 ≈ 0.49. Compute φ̂ ∈ argmaxφ∈Gconc(p̂0)
ℓ(φ, p̂0).
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Example 3: Survival function estimates
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R package

Algorithm implemented in R package logconcens.

Give it a try!
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